
Semantic approaches to hardware vulnerabilities

Sébastien MICHELLAND

1st. year PhD, with Christophe DELEUZE and Laure GONNORD

sebastien.michelland@lcis.grenoble-inp.fr

1/12



Wait, what hardware vulnerabilities?

Fault injections!
Well-known attack on RSA [Bar-El et al.(2006)]:

Message

Good signature s

Bad signature ŝ

Sign

Inject a fault!

GCD(s − ŝ,N) = Private key!

Side channels!
Power, heat, timing data revealing the program’s internal state.

2/12



These vulnerabilities break the program...

In a lot of ways, approximated by fault models:

▶ Corrupt data in registers

▶ Skip instructions

▶ Jump anywhere in the program

▶ Disrupt instruction decoding ◀ Different!

▶ Leak instructions’ execution times [Winderix et al.(2021)] ◀ Different!

We really want to automate them away!

% clang prog.c -harden-faults=instruction-skip ...

3/12



... or, rather, they break the semantics.

Assembler with instruction skip transition:

σ ⊢ i → σ′

Initial state Instruction Final state

σ ⊢ i1 → σtmp σtmp ⊢ i2 → σ′

σ ⊢ (i1; i2) → σ′ SEQUENCE
σ ⊢ i2 → σ′

σ ⊢ (i1; i2) → σ′ SKIP!

Thinking semantics leads right into relevant questions!

▶ How many skips can occur? How frequently?

▶ What if we skip the terminator of a block?

4/12



They expose architectural details.

To model side channels, add a trace of observable leaked data:

σ ⊢ i → (σ′, τ)

Initial state Instruction Final state Trace

Ok, but how long is mov r1, r2 in the first place?

Problem: faults expose architectural details.

A tuned semantics, unlike assembler, can capture these!

5/12



Yet, existing work apparently doesn’t bridge this gap.

Assembler level:

▶ Friendly to reason with to design countermeasures

▶ Compiler can sometimes help with automation [Winderix et al.(2021)]

▶ But fault models are hitting an accuracy wall [Laurent et al.(2018)]

Can we capture a useful abstraction middle ground?

Meanwhile, microarchitecture level:

▶ Often models the entire circuit’s RTL or even lower-level

▶ Focuses on finding the effects of faults

6/12



Yet, existing work apparently doesn’t bridge this gap.

Assembler level:

▶ Friendly to reason with to design countermeasures

▶ Compiler can sometimes help with automation [Winderix et al.(2021)]

▶ But fault models are hitting an accuracy wall [Laurent et al.(2018)]

Can we capture a useful abstraction middle ground?

Meanwhile, microarchitecture level:

▶ Often models the entire circuit’s RTL or even lower-level

▶ Focuses on finding the effects of faults

6/12



Semantics helps by being formal...

Let’s protect against the instruction-latency side channel:

P1

branch

add (2 cycles) mov (1 cycle)

P2

branch

nop1 (1 cycle)
add (2 cycles)

mov (1 cycle)
nop2 (2 cycles)

Theorem (P2 is protected!)

▶ P2 computes the same result as P1 (same σ → same σ′)

▶ P2 leaks no input-dependent timings (τ is the same for all σ)

7/12



... by inviting hardware into countermeasure design...

Situation: one byte of code is skipped, offsetting all opcodes.

How do we deal with corrupted instructions at assembler level?

▶ Honestly: we don’t.

▶ Protection code is corrupted too anyway.

Any serious option will have to deal with the low-level details:

▶ Add an integrity check in decoder?

▶ Use judicious opcodes so that a chosen register cannot be leaked during the 1-2
cycles until the error is detected?

8/12



... and is known to interface well with compiler optimization.

Options for hardening at a high-level:

1. Harden after compiling [Winderix et al.(2021)];

2. Avoid compiler interference with -O0;

3. Encode the counter-measure’s properties in C/IR/ASM semantics to force the
compiler to preserve them [Vu et al.(2020)].

Option #3 brings us right in sight of the altered semantics we’ve been studying!

9/12



Conclusion

▶ Semantics functions like a flexible abstraction level.

▶ We can use it to capture important architectural aspects and involve hardware in
countermeasure design!

▶ We can also use it as a bridge to compiler automation and compiler optimization!

Audience questions?

10/12



Conclusion

▶ Semantics functions like a flexible abstraction level.

▶ We can use it to capture important architectural aspects and involve hardware in
countermeasure design!

▶ We can also use it as a bridge to compiler automation and compiler optimization!

Audience questions?

10/12



References I

H. Bar-El, Hamid Choukri, D. Naccache, Michael Tunstall, and C. Whelan. 2006.
The Sorcerer’s Apprentice Guide to Fault Attacks.
(2006).
https://doi.org/10.1109/JPROC.2005.862424

Johan Laurent, V. Beroulle, C. Deleuze, Florian Pebay-Peyroula, and Athanasios
Papadimitriou. 2018.
On the Importance of Analysing Microarchitecture for Accurate Software Fault
Models.
(2018).
https://doi.org/10.1109/DSD.2018.00097

11/12

https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/DSD.2018.00097


References II

S. Vu, Karine Heydemann, Arnaud de Grandmaison, and Albert Cohen. 2020.
Secure delivery of program properties through optimizing compilation.
(2020).
https://doi.org/10.1145/3377555.3377897

Hans Winderix, J. Mühlberg, and F. Piessens. 2021.
Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency
Side-Channel Attacks.
(2021).
https://doi.org/10.1109/EuroSP51992.2021.00050

12/12

https://doi.org/10.1145/3377555.3377897
https://doi.org/10.1109/EuroSP51992.2021.00050

