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Wait, what hardware vulnerabilities?

Fault injections!
Well-known attack on RSA [Bar-El et al.(2006)]:

Message

Good signature s

Bad signature ŝ

Sign

Inject a fault!

GCD(s − ŝ,N) = Private key!

Side channels!
Power, heat, timing data revealing the program’s internal state.
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These vulnerabilities break the program...

In a lot of ways, approximated by fault models:

▶ Corrupt data in registers

▶ Skip instructions

▶ Jump anywhere in the program

▶ Disrupt instruction decoding ◀ Different!

▶ Leak instructions’ execution times [Winderix et al.(2021)] ◀ Different!

We really want to automate them away!

% clang prog.c -harden-faults=instruction-skip ...
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... or, rather, they break the semantics.

Assembler with instruction skip transition:

σ ⊢ i → σ′

Initial state Instruction Final state

σ ⊢ i1 → σtmp σtmp ⊢ i2 → σ′

σ ⊢ (i1; i2) → σ′ SEQUENCE
σ ⊢ i2 → σ′

σ ⊢ (i1; i2) → σ′ SKIP!

Thinking semantics leads right into relevant questions!

▶ How many skips can occur? How frequently?

▶ What if we skip the terminator of a block?
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They expose architectural details.

To model side channels, add a trace of observable leaked data:

σ ⊢ i → (σ′, τ)

Initial state Instruction Final state Trace

Ok, but how long is mov r1, r2 in the first place?

Problem: faults expose architectural details.

A tuned semantics, unlike assembler, can capture these!
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Yet, existing work apparently doesn’t bridge this gap.

Assembler level:

▶ Friendly to reason with to design countermeasures

▶ Compiler can sometimes help with automation [Winderix et al.(2021)]

▶ But fault models are hitting an accuracy wall [Laurent et al.(2018)]

Can we capture a useful abstraction middle ground?

Meanwhile, microarchitecture level:

▶ Often models the entire circuit’s RTL or even lower-level

▶ Focuses on finding the effects of faults
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Semantics helps by being formal...

Let’s protect against the instruction-latency side channel:

P1

branch

add (2 cycles) mov (1 cycle)

P2

branch

nop1 (1 cycle)
add (2 cycles)

mov (1 cycle)
nop2 (2 cycles)

Theorem (P2 is protected!)

▶ P2 computes the same result as P1 (same σ → same σ′)

▶ P2 leaks no input-dependent timings (τ is the same for all σ)
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... by inviting hardware into countermeasure design...

Situation: one byte of code is skipped, offsetting all opcodes.

How do we deal with corrupted instructions at assembler level?

▶ Honestly: we don’t.

▶ Protection code is corrupted too anyway.

Any serious option will have to deal with the low-level details:

▶ Add an integrity check in decoder?

▶ Use judicious opcodes so that a chosen register cannot be leaked during the 1-2
cycles until the error is detected?
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... and is known to interface well with compiler optimization.

Options for hardening at a high-level:

1. Harden after compiling [Winderix et al.(2021)];

2. Avoid compiler interference with -O0;

3. Encode the counter-measure’s properties in C/IR/ASM semantics to force the
compiler to preserve them [Vu et al.(2020)].

Option #3 brings us right in sight of the altered semantics we’ve been studying!
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Conclusion

▶ Semantics functions like a flexible abstraction level.

▶ We can use it to capture important architectural aspects and involve hardware in
countermeasure design!

▶ We can also use it as a bridge to compiler automation and compiler optimization!

Audience questions?
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