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Frama-C at a Glance

Part I

Frama-C at a Glance



Frama-C
Open Source Distribution

Framework for analyses of source code written in ISO 99 C
[Baudin & al, 2021]

I developed by CEA LIST since 2005

I comes with a formal specification language: ACSL

I targets both academic and industrial usage

I almost open source (LGPL 2.1)

I first open-source release (1-Hydrogen) in 2008

I last open-source release (26-Iron): yesterday!

http://frama-c.com

I also non-CEA extensions and distributions

I targets both academic and industrial usages



Frama-C
Collection of Tools

Several tools inside a single platform

I plug-in architecture à la Eclipse [Signoles, 2015]

I tools provided as plug-ins

I 32 plug-ins in the latest open source distribution

I outside open source plug-ins

I close source plug-ins, either at CEA (> 20) or outside

I plug-ins connected to a kernel

I provides an uniform setting (command lines, AST, etc)

I provides general services (data structures, etc)

I synthesizes useful information (proved properties, etc)

I analyzer combinations [Correnson & Signoles, 2012]
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Frama-C
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Frama-C
Development Platform

I developed in OCaml

I library dedicated to analysis of C code

development of plug-ins by third party

I powerful low-cost analyser

I dedicated plug-in for specific task (e.g., coding rule verifier)

I dedicated plug-in for fine-grain parameterization

I extension of existing analysers



Main Verification Tools

Part II

Main Verification Tools



Eva
Value Analysis

Domain of variations of variables of the program

I abstract interpretation

I automatic analysis

I correct over-approximation

I alarms for potential invalid operations

I alarms for potential invalid ACSL annotations

I ensures the absence of runtime error

I graphical interface: display the domain of each variable at
each program point

I [Blazy et al, 2017]



Eva
Parameterization

I Eva is automatic

I but requires fine-tuned parameterization to be
precise/efficient

I trade-off between time efficiency vs memory efficiency vs
precision

I stubbing: main function and missing library function

I either provide C code or ACSL specification (usually,
assigns)

I similar to stubbing required by testing

I 100+ parameters
I require expertise

I try -eva-precision n first (0 ≤ n ≤ 11)



Demo

PolarSSL

(now known as Mbed-TLS)

https://git.trustedfirmware.org/mirror/mbed-tls.git/about/

I C implementation of TLS (aka SSL)

I not as complex as openSSL

https://git.trustedfirmware.org/mirror/mbed-tls.git/about/


Dependency Analysis

I tied to Eva

I for each memory location loc possibly modified, returns its
dependencies

I i.e. the set of locations whose value might be used in
computing the final value of loc

I over-approximation: some dependencies might be spurious

I may help security audits



Example
Keccak (SHA-3)

> frama -c -eva -eva -slevel 1000 -deps \

Keccak -simple.c KeccakNISTInterface.c \

KeccakSponge.c KeccakF -1600 - reference.c test.c

[from] Function rho:

context.state [0..199]

FROM context.state [0..199];

KeccakRhoOffsets [0..24]; A (and SELF)

[from] Function theta:

context.state [0..199] FROM

context.state [0..199]; A (and SELF)

[from] Function KeccakPermutationOnWords:

context.state [0..199] FROM

context.state [0..199];

KeccakRoundConstants [0..23];

KeccakRhoOffsets [0..24]; state (and SELF)



Impact

I computes impact of a set S of statements
[Monate & Signoles, 2008]

I i.e. the statements whose evaluation depend on S
I data dependency (whether it results from a computation)

I x = n; y = x;

I address dependency (whether its memory location is
impacted)
I p = q; *p = 0;

I control dependency (whether a branch may be taken)
I if (c) x = n; y = x;

I exploit the Program Dependence Graph (PDG)

I make explicit all the program dependencies
[Ottenstein and Ottenstein, 1984]

I Frama-C’s PDG relies on Eva for infering aliasing information

I may help security audits



Slicing

I removes all statements that do not change some slicing
criterion

I slicing criterion

I value of a variable at a given point

I truth value of an ACSL assertion

I final state of the program

I same dependencies as impact, but used in the opposite
direction (dual analysis)

I may make other analyses more tractable

I may help security audits



Wp
Proof of Programs

I based on Dijkstra’s weakest preconditon calculus

I generates theorems (proof obligations) to ensure that a code
satisfies its ACSL specification

I uses automatic/interactive theorem provers to verify these
theorems
I rely on Why3 as back-end
I use Alt-Ergo by default

I is able to verify complex specifications

I modular verification
I prove each function independently from each other
I require no stubbing

I requires to manually add extra annotations (e.g. loop
invariants)



Wp
Student Example

/*@ predicate sorted{L}(int* a, int length) =

\forall integer i,j; 0<=i<=j<length ==> a[i]<=a[j]; */

/*@ requires \valid(a+(0..length-1));
requires sorted(a,length);

requires length >=0;

assigns \nothing;
behavior exists:

assumes \exists integer i; 0 <= i < length && a[i] == key;

ensures 0<=\result<length && a[\result] == key;

behavior not_exists:

assumes \forall integer i; 0<=i<length ==> a[i] != key;

ensures \result == -1;

complete behaviors;

disjoint behaviors; */

int binary_search(int* a, int length, int key);

non-security oriented!



Wp
ACSL and Memory Properties

I memory properties are important for code security

I ACSL provides built-ins memory-related predicates and
functions

I \valid(p): whether ∗p has been properly allocated

I \valid read(p): same as \valid(p) but p is read only
(e.g., literal string)

I \initialize(p): whether ∗p is initialized

I \separated(p,q): p and q point to disjoint memory blocks

I

\base addr(p)

p p+i

\offset(p)

\block length(p)

I · · ·



WP’s Use Cases

I X509 parser developped by ANSSI
I https://github.com/ANSSI-FR/x509-parser

I Wookey, secure storage device developped by ANSSI
I https://github.com/wookey-project
I [Benadjila et al, 2019]

I proved RTE-free by ANSSI
I functional correctness also proved

I combined Eva and Wp

I X509: [Ebalard et al, 2019]

I Wookey: [Benadjila et al, 2021]



E-ACSL
Runtime Assertion Checking

verification of ACSL properties at runtime

I generates inline monitors for ACSL properties

I takes as input an ACSL-annotated C program

I generates a new C program

I that behaves as the original C program if all the annotations
are valid; or

I fails on the first invalid annotation (by default)

I [Signoles et al, 2017]

int div(int x, int y) {

/*@ assert y-1 != 0; */

return x / (y-1);

}

int div(int x, int y) {

/*@ assert y-1 != 0; */

e acsl assert(y-1 != 0L);

return x / (y-1);

}

E-ACSL



E-ACSL
Memory Monitoring

how to monitor memory-related properties, e.g. \valid(p+i)?

\base addr(p)

p p+i

\offset(p)

\block length(p)

I block-level memory properties

char buf1[1], buf2[1];

/*@ assert \valid(buf1 + 1); */ // must fail

buf1[1] = ’a’;
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E-ACSL Expressiveness
[Vorobyov et al, 2018]

Defect Type E-ACSL Google’s Sanitizers
in Clang

Dynamic Memory 94% (81/86) 78% (67/86)
Static Memory X (67/67) 96% (64/67)
Pointer-related 56% (47/84) 32% (27/84)
Stack-related 35% (7/20) 70% (14/20)
Resource 99% (95/96) 60% (58/96)
Numeric 93% (100/108) 59% (64/108)
Miscellaneous 94% (33/35) 49% (17/35)
Inappropriate Code – (0/64) – (0/64)
Concurrency – (0/44) 73% (32/44)

Overall 71% (430/604) 57% (343/604)

Detection Capabilities over Toyota ITC Benchmark:
more expressive than mainstream tools



E-ACSL Performance
[Vorobyov et al, 2017]

164
.gzi

p
175

.vp
r
179

.art
181

.mcf

183
.eq

uak
e

188
.am

mp

197
.pa

rse
r

256
.bzi

p2

300
.tw

olf

401
.bzi

p2
429

.mcf

433
.milc

458
.sje

ng

456
.hm

mer
470

.lbm

998
.spe

cra
nd

999
.spe

cra
nd

104.91

0

10

20

30

40

50

R
u
n
ti

m
e
 O

v
e
rh

e
a
d
 R

a
ti

o

E-ACSL-Shadow
MemCheck
ASan
Dr. Memory (64)
Dr. Memory (32)

×17 time-overhead; ×2.4 memory overhead on SPEC-CPU

comparable to Valgrind; still slower than AddressSanitizer
less memory-overhead than these tools



E-ACSL
Dassault Aviation’s Use Case

first, use automatic static analysis to detect vulnerabilities;
then, switch to fast runtime monitoring

Experimented on modules from Apache / OpenSSL
[Pariente & Signoles, 2017]



Advanced Security Verifications

Part III

Advanced Security Verifications



Test Inversion and Countermeasures

if (password != secret) return 1;

if ! (password == secret) return 1;

I countermeasures: redundancy checks for critical sections
I repeat critical checks at least k + 1 time each, assuming the

attacker can invert up to k tests

I prove correctness of redundant-check countermeasures
I rely on mutation testing

I implemented in Frama-C/LTest
I LTest is a suite of Frama-C plug-ins providing test coverage

metrics

I successfully applied on Wookey
I 1 incorrect countermeasure found
I proved after fixing
I [Martin et al, 2022]



MetACSL: System-Level Properties
[Robles et al, 2019]

I ACSL is a quite low-level specification language

I difficult to express system-level properties

I e.g. security policies

I MetACSL introduces a higher-level specification language

I MetACSL automatically converts specifications written in
this language to sequences of ACSL annotations

I verify the generated annotations with standard techniques

I WP

I E-ACSL



MetACSL in Practice

I example from an OS microkernel’s specification:

/*@ meta \macro, \name(\forall_page), \arg_nb(2), ... */

// Never write to a lower confidentiality page

// outside of free

/*@ meta \prop,
\name(confidential_write),
\targets(\diff(\ALL, page_free, init)),

\context(\writing),
\forall_page(p,
p->status == PAGE ALLOCATED

&& user_level > page_level(p)

==> \separated(\written, page_data(p))

); */

I MetACSL used for specificying and verifiying with WP the
Wookey’s bootloader module [Robles et al, 2021]



Common Criteria Certification
[Djoudi et al, 2021]

I Formal verification of a JavaCard Virtual Machine

I Common Criteria’s EAL7 certificate

I Example of properties
I header integrity

I allocated object’s header cannot be modified during a run
I data integrity

I allocated object’s data can be modified only by the owner
I data confidentiality

I allocated object’s data can be read only by the owner

I generate ≈ 400, 000 ACSL annotations from ≈ 500
MetACSL properties
I all proved with Wp



Conclusion and Perspectives

I Frama-C provides scalable analyzers for C code verification
I Eva: proving absence of undefined behaviors
I Wp: proving functional properties
I E-ACSL: checking properties at runtime

I possible to check advanced security properties
I correctness of redundancy checks
I system-level properties
I but also (not shown here):

I information flow properties [Barany and Signoles, 2017]
I relational properties [Blatter et al, 2022]
I privacy properties (Clouet’s talk this afternoon)
I taint analysis (ongoing work)
I type-state analysis (ongoing work)
I access-control policies (ongoing work)
I ...

I usable for real-world applications
I EAL7 certification
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